
RAGE Component Design Document Last update: 2018-03-20

Design Document – Competence Assessment Component
TUGraz – T2.2C – Apache 2.0 – Client side

About this component
This component will be implemented as a client-side component. Based on a Domain Model and

information from the game it assesses the competence state (= set of possessed competences) of a

player. The component architecture will prevent multiple component creation; only one component

per game is needed.

Component mechanics
Evidences (events or tasks in a game) speaking either for or against possession of a competence are

used to update the probability of competence possession. For this purpose a competence structure

represented in the domain model is used. One can work directly with evidences by sending them to

the component or send actions, expressed as identification strings, performed in the game and use a

mapping between these actions and evidences. For the update procedure we allow multiple

significances, meaning that the evidence of possessing/lacking a competence may be stronger or

weaker for some actions. All competences with a probability over a certain threshold are assumed to

be available for a player.

Component interfaces
 The component will be able to return the set of possessed competences linked to a player . A

C# representation in the component interface could be:

List<string > getCompetenceState()

 The component will be able to update the player’s current competence state by receiving

evidence-tuples consisting of a competence identification, significance and an indicator if the

player showed possession of the corresponding competence or not. A C# representation in

the component interface could be:

void updateCompetenceState(List<string> evidences, List<string> significance, List<Boolean>

type)

 Another way of updating the competence state is to use actions performed by the player for

this purpose. Therefore, a mapping located in the domain model is used to map the

actions/gamesituations represented by identification strings to competences and evidences

for or against possession of them. A C# representation in the component interface could be:

void updateCompetenceStateAccordingToActivity (String action)

void updateCompetenceStateAccordingToGamesituation(String gs, Boolean success)

 In order to repeat a game the following interface resets the competence state:

 void resetCompetenceState()

Component dependencies/requirements
 The component depends upon the Domain Model Component for receiving a domain model.

 It also depends on the client-side tracker for sending the current competence state to the

server.

 The storage component is used to store the competence state locally.

RAGE Component Design Document Last update: 2018-03-20

Milestones
Milestone 1

 t1.1: Creating the first version of the design document, defining the API and creating a

dummy component with the API implemented

Milestone 2

 t2.1: Create Software component in line with Component -Manager infrastructure.

 t2.2: Elaborate Settings-structure within the Component -Manager infrastructure.

 t2.3: Integrate the tracker.

 t2.4: Include different update strengths.

 t2.5: tUpdate Competences via activities.

 t2.6: Integrate Game Storage functionality into the component-functionality.

Milestone 3

 t3.1: testing the component with a game

 t3.2: instructions and scripts for building and deploying

RAGE Component Design Document Last update: 2018-03-20

Graphical representation

 Client-Side

GAME

… Flow of information

… Communication start

… Interface’s exposed method

… Component

<*>

Domain Model

Component (client side)

Game storage

Client-Side interaction

tracking

Competence

Assessment

Component

<updateCompetenceState>

<getCompetenceState>

Server-Side

UCM Infrastructure

Analytics Dashboard

<resetCompetenceState>

RAGE Component Design Document Last update: 2018-03-20

Set up the Component
For the Competence Assessment Component, there are two thing to do (additionally to creating the

component) when setting it up:

 The Domain Model Component needs to be in place, supplying a domain model adopted to

the desired update method.

Use the Component
There are three different ways of using this component when it comes to input new information

about the competence state and one for accessing the current competence state.

 Updating competences directly. Therefore a list of competences to update, a list of

information of which quality the update is (true means increase, false means decrease) and a

list of information how strong the update should influence the possession probability. For

one competence, this can be done like shown in the following code snipped:

 CompetenceAssessmentAsset caa = CompetenceAssessmentAsset.Instance;
 List<String> compList = new List<string>();

 List<Boolean> evidenceList = new List<Boolean>();
 List<EvidencePower> evidencePowers = new List<EvidencePower>();
 compList.Add("C1");
 evidenceList.Add(true);
 evidencePowers.Add(EvidencePower.Medium);
 caa.updateCompetenceState(compList, evidenceList, evidencePowers);

 Updating competences based on activities. Therefore only the activity needs to

be supplied, all other information needs to be persistent in the loaded domain

model.

 CompetenceAssessmentAsset caa = CompetenceAssessmentAsset.Instance;
 caa.updateCompetenceStateAccordingToActivity("doThingA");

 Updating competences according to a game situation. Therefore the game

situation id needs to be supplied and the information if the game situation was

mastered successfully (true) or not (false), all other information needs to be

persistent in the loaded domain model.

 CompetenceAssessmentAsset caa = CompetenceAssessmentAsset.Instance;
 caa.updateCompetenceStateAccordingToGamesituation("gamesituation1",true);

 For accessing the competence state the following method is used. The result is
interpreted as the pairs of competence name and probability of possession for
the player.

 Dictionary<string, double> cs = caa.getCompetenceState();

RAGE Component Design Document Last update: 2018-03-20

Deployment
For the source code the following GitHub-link can be used https://github.com/RAGE-

TUGraz/CompetenceBasedAssets - it contains the Visual Studio solution of the competence based

component. Furthermore, the broken links to external component DLLs need to be fixed for each

project and the Bridge code need to be adopted to the new environment, e.g. changing the

IDataStorage path.

For integration into Unity, the resulting DLLs need to put into a folder in the Unity working-directory.

Unit test
For executing unit tests, the source code need to be open in visual studio and all links need to be

fixed. In the test-explorer all tests can be executed.

https://github.com/RAGE-TUGraz/CompetenceBasedAssets
https://github.com/RAGE-TUGraz/CompetenceBasedAssets

